

Rearrangement of the Carbanion Generated from a Tied-back 1,2,4-Trithiolane Oxide (6,7,8-Trithiabicyclo[3.2.1]octane 6-Oxide)

Akihiko Ishii,* Tetsuya Nakaniwa, Kazuyo Umezawa and Juzo Nakayama*

Department of Chemistry, Faculty of Science, Saitama University, Urawa, Saitama 338-8570, Japan Received 4 June 1999; accepted 30 June 1999

Abstract: Treatment of 2,2,4,4-tetramethyl-6,7,8-trithiabicyclo[3.2.1] octane 6-exo-oxide (3) with LDA, followed by treatment with D₂O, RI (R = Me, Et), and 2-PrBr, yielded the deuterated starting compound (3-d), bicyclic 1,3-dithietane oxides (12, 13), and (2-propyldithio)thiolactone (14), respectively. The initially-formed bridgehead lithium salt (11) opens the bicyclic skeleton to give the lithium δ -thioxoperoxydithiocarboxylate (15), which finally isomerizes to the lithium [3-oxo(2-thianyl)]disulfide (19) via the peroxydithiocarboxylate- α -oxodisulfide rearrangement. © 1999 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

Dithioacetals have great synthetic utility, in particular, as an acyl anion equivalent.¹ Whereas six-membered cyclic dithioacetals, for example 1,3-dithianes, have been investigated extensively in this viewpoint,¹ the use of carbanions of five-membered cyclic dithioacetals, for example 1,3-dithiolanes, in organic synthesis is limited to a few cases^{2a,b} because of the strong tendency toward fragmentation to alkenes and dithiocarboxylates.^{2b,c} 1,2,4-Trithiolanes 1, a sulfur analog of ozonides, are expected to have acidic hydrogens at the 3 and 5 positions as well, but there are few reports on their anions as far as we know.³ We prepared a 6,7,8-trithiabicyclo[3.2.1]octane 2 and its 6-oxide 3, tied-back 1,2,4-trithiolanes, as precursors for 6,7-dithiabicyclo[3.1.1]heptanes 4, which could be converted to isolable dithiiranes 5 under oxidative hydrolysis conditions.⁴ Generation of the bridgehead carbanion from 3, followed by treatment with electrophiles, was now found to lead to unexpected reactions, in which products are strongly dependent on the electrophiles added (Eq. 1). We report here structure elucidation of the products and the mechanistic consideration on the reactions.

RESULTS AND DISCUSSION

The 1,2,4-trithiolane 2 was prepared by reactions shown in Scheme 1. Treatment of the dicarboxylic acid 6⁵ with 3 molar amounts of PhLi gave the keto acid 7, the reduction of which with LiAlH₄ yielded the diol 8. A Swern oxidation of 8 followed by sulfurization of the resulting keto aldehyde 9 with Lawesson's reagent (LR)⁶ furnished 2. Such trithiolane formation by sulfurization of dicarbonyl compounds was observed in our previous study.^{4,7} Since 2 resisted lithiation with LDA,⁸ it was oxidized for increasing acidity of the bridgehead hydrogen. Oxidation of 2 with MCPBA proceeded regio- and stereoselectively to give the 1,2,4-trithiolane 1-exo-oxide 3. The regio- and stereochemistry of 3 was determined by X-ray crystallography unambiguously (Figure 1). The present regioselectivity is contrast to the previous reports where the oxidation of the unsubstituted 1,2,4-trithiolane with NaIO₄⁹ or H₂O₂-V₂O₅¹⁰ gave an almost 1:1 mixture of the 1- and 4-oxides or the 4-oxide solely, respectively.

Scheme 1

Ph
$$\frac{1}{35\%}$$
 Ph $\frac{1}{35\%}$ Ph \frac

i: PhLi (3 molar amounts), PhH, Et₂O, refl., 14 h; ii: LiAlH₄ (3 molar amounts), Et₂O, r.t., 3.5 h; iii: CF₃CO₂H (3 molar amounts), DMSO (4 molar amounts), CH₂Cl₂, -65 °C and then Et₃N (excess), r.t.; iv: LR (2 molar amounts), xylene, refl., 49 h; v: MCPBA (1.3 molar amounts), CH₂Cl₂, 0 °C, 3 h.

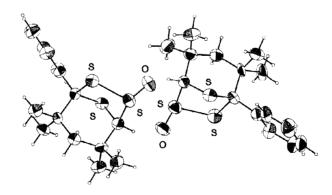


Figure 1. ORTEP drawing of the 1,2,4-trithiolane oxide 3 (50% probability ellipsoids)

Treatment of 3 with LDA in THF at -78 °C, followed by quenching with D_2O , yielded the deuterated trithiolane oxide 3-d and the hydroxydithiolactone 10 (Eq. 2). The successful deuteration of 3, apart from the formation of 10, indicates the generation of the bridgehead carbanion 11. It is worth noting here that, when LDA was added to a solution of 3, the color of the reaction mixture turned from colorless to deep purple immediately, suggesting the presence of another intermediate with a strong chromophor. The purple color disappeared quickly when D_2O was added.

When the purple solution was treated with MeI and EtI, the color disappeared quickly. Purification of the mixture furnished 6,7-dithiabicyclo[3.1.1]heptane 6-oxides (tied-back 1,3-dithietane oxides) 12 and 13, instead of expected substituted trithiolanes. The structures of 12 and 13 were determined by their spectroscopic data and the *endo* stereochemistry of the S=O group was confirmed by X-ray crystallography on 12 (Figure 2). On the other hand, the reaction with 2-PrBr did not proceed at low temperatures probably because of steric hindrance of the reagent, and the purple color remained up to room temperature. The product was the (2-propyldithio)thiolactone 14. The structure of 14 was determined by X-ray crystallography (Figure 3).

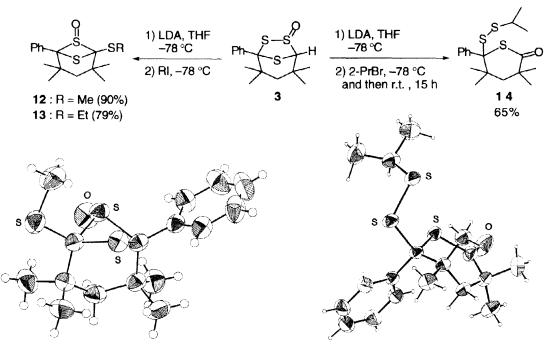


Figure 2. ORTEP drawing of 12. (50% probability ellipsoids)

Figure 3. ORTEP drawing of 14. (50% probability ellipsoids)

It is hard to explain the formation of 12—14 in terms of simple reactions of the carbanion 11 with the alkyl halides, implying the existence of other anionic precursors for each product. A reaction mechanism to interpret the above results is considered as follows on the basis of additional two experiments. The first one is the UV-Vis spectrum of the purple solution (THF) that exhibited the longest absorption maximum at 563 nm (ε > 94). The position of the absorption is very similar to the $n\rightarrow\pi^*$ absorption of an alkyl aryl thioketone, PhC(=S)CMe₂CH₂CMe₂C(=O)Ph [λ_{max} 569 nm (ε 71)]. Therefore, it is possible to assume the ring-opening intermediates 15 with a thiocarbonyl group as the origin of the purple color. A similar ring-opening of ozonides is known.^{3,11} Thus, the anionic intermediates 11 and 15 coexist at equilibrium at low temperatures. The formation of the dithietane oxides 12 and 13 is explained in terms of S-addition by MeI and EtI on 15a to lead to the δ -thioxodithioester oxides 16, which yield 12 and 13 by an intramolecular [2+2]-cyclization. An attempt to trap another tautomer 15b with a silyl chloride failed to give a complex mixture.

Scheme 2

$$\begin{bmatrix} S & S & Ph & S & S \\ \hline 11 & 15a & 15b \end{bmatrix} Li^{+} & RI & Ph & S & SF \\ \hline S-addition & on 15a & 16 \\ (R = Me, Et) & [2+2] & \\ \hline 3-d & 12 \text{ or } 13 & \\ \end{bmatrix}$$

The second experiment is to allow the intermediate anions to decompose thoroughly. Thus, the purple-colored mixture was warmed to room temperature. After the disappearance of the color (38 h), the reaction was quenched with water to give *dl*- and *meso*-trisulfides 17 in 14 and 12% yields, respectively, along with the thiol 18 (12%) and 2 (Eq. 3). The structures of *dl*- and *meso*-17 were elucidated by their spectroscopic data and results of elemental analysis. The one isomer of 17, which gives two peaks on HPLC analysis using a chiral column, was assigned to the *dl*-isomer and the other, giving only one peak on the analysis, to the *meso*-one.

The formation of the trisulfides 17 and the thiol 18 is in harmony with that of the (2-propyldithio)thiolactone 14, and is indicative of the disulfide salt 19 as their common precursor (Scheme 3). There is a precedent of the decomposition of disulfide salts (RS_2-X^+) under basic conditions that leads to the formation of the corresponding trisulfides and thiols. ¹² Metzner et al. observed the isomerization of dithioester

oxides 22 to dithioperoxyesters 23 at room temperature, where they proposed a rearrangement via oxathiirane intermediates 23 (Eq. 4).¹³ This would be also true for the present case: the rearrangement of 15 to 20 takes place via the oxathiirane intermediate 21 and then ring-closure and re-ring-opening would produce 19.

Species produced by desulfurization of 20 or 21 or their protonated compounds may be responsible for the formation of hydroxydithiolactone 10 shown in Eq. 2. The mechanism for the formation of the reduction product 2 in Eq. 3 is not clear.

Scheme 3

In summary, we found characteristic reactivities of the carbanion generated from the tied-back 1,2,4-trithiolane oxide 3, where the bridgehead carbanion 11 is in equilibrium with the δ -thioxoperoxydithiocarboxylate (15) at low temperatures. The peroxydithiocarboxylate 15 undergoes a rare type of oxygen-sulfur exchange at higher temperatures to give the α -oxodisulfide 20 which isomerizes to the [3-oxo(2-thianyl]disulfide 19 finally.

ACKNOWLEDGMENT

This work was supported by Grants-in-Aid for Scientific Research Nos. 09440213 and 10133206 from the Ministry of Education, Science, Sports and Culture of Japan.

EXPERIMENTAL

General. Melting points were determined on a Mel-Temp capillary tube apparatus and are uncorrected.

¹H and ¹³C NMR spectra were determined on Bruker AM400 (400 and 100.6 MHz, respectively), AC300P (300 MHz for ¹H), or AC200 (200 and 50 MHz, respectively) spectrometers using CDCl₃ as the solvent. IR

spectra were taken on a Hitachi 270-50 spectrometer. UV-Vis spectra were measured using a JASCO V-560 spectrophotometer. Mass spectra were determined on a JEOL JMS-DX303 spectrometer operating at 70 eV in the EI mode. Elemental analysis was performed by the Chemical Analysis Center of Saitama University. Throughout this work, the organic layer of the reaction mixture was dried over anhydrous magnesium sulfate. Column chromatography was performed with silica gel and the eluent is shown in parentheses.

- **2,2,4,4-Tetramethyl-5-oxo-5-phenylvaleric Acid** (7): To a solution of 2,2,4,4-tetramethylglutaric acid (6)⁵ (3.22 g, 17.1 mmol) in THF (3 mL) was added benzene (250 mL) and then PhLi in ether (1.04 M, 49.6 ml, 51.3 mmol) slowly with ice-water cooling. After having been heated under reflux for 14 h, the mixture was diluted with conc. HCl (50 mL) and extracted with benzene twice. The combined extracts were washed with water, dried, and evaporated to dryness. The residue was recrystallized from hexane to give 7 as colorless crystals (3.54 g, 83%): m.p. 122—123 °C. ¹H NMR (200 MHz) δ 1.14 (s, 6H), 1.32 (s, 6H), 2.34 (s, 2H), 7.33—7.66 (m, 5H); ¹³C NMR (50 MHz) δ 26.6, 27.0, 41.7, 47.5, 48.9, 127.98, 128.03, 130.7, 139.0, 185.2, 209.3; IR (KBr) 3300—2300 (CO₂H), 1698 (C=O) cm⁻¹. Anal. Calcd for C₁₅H₂₀O₃: C, 72.55; H, 8.11. Found: C, 72.48; H, 8.23.
- **2,2,4,4,-Tetramethyl-1-phenylpentane-1,5-diol** (8): A solution of **7** (3.54 g, 14.2 mmol) in ether (120 mL) was added to a suspension of LiAlH₄ (1.62 g, 42.7 mmol) in ether (20 mL) over a period of 1.3 h at room temperature. The mixture was stirred for 3.5 h and then diluted with aq. NH₄Cl. The mixture was filtered through a pad of Celite placed on a Büchner funnel and the filtrate was extracted with ether twice. The combined extracts were washed with water, dried, and evaporated to dryness. The residue was subjected to column chromatography (CH₂Cl₂-Et₂O 1:1) to give **8** as a colorless oil (3.30 g, 98%): b.p. 135.0—135.5 °C/2.5 mmHg (bulb-to-bulb distillation). ¹H NMR (400 MHz) δ 0.82 (s, 3H), 0.90 (s, 3H), 0.95 (s, 3H), 1.00 (s, 3H), 1.09 (d, J = 15.1 Hz, 1H), 1.86 (d, J = 15.1 Hz, 1H), 3.20 (d, J = 11.0 Hz, 1H), 3.48 (br s, 2H, OH×2), 3.57 (d, J = 11.0 Hz, 1H), 4.63 (s, 1H), 7.21—7.27 (m, 5H); ¹³C NMR (100.6 MHz) δ 25.0 (CH₃), 25.6 (CH₃), 26.4 (CH₃), 29.7 (CH₃), 37.0 (C), 39.7 (C), 45.7 (CH₂), 72.1 (CH₂), 80.7 (CH), 127.2 (CH), 127.4 (CH), 128.0 (CH), 141.7 (C). Anal. Calcd for C₁₅H₂₄O₂: C, 76.23; H, 10.23. Found: C, 76.19; H, 10.23.
- **2,2,4,4-Tetramethyl-5-oxo-5-phenylpentanal** (9): To a solution of dimethyl sulfoxide (1.7 mL, 23.8 mmol) in CH₂Cl₂ (13 mL) cooled at -65 °C was added a solution of trifluoroacetic anhydride (2.5 mL, 17.8 mmol) in CH₂Cl₂ (7.5 mL) over a period of 20 min. To the mixture was added a solution of the diol 8 (1.40 g, 5.94 mmol) in CH₂Cl₂ (13 mL) over a period of 20 min and the mixture was stirred for 35 min at -65 °C. After having been warmed to room temperature and stirred for 40 min, the mixture was cooled on an icewater bath and treated with triethylamine (5 mL) and then water. The mixture was extracted with ether twice. The combined extracts were washed with dil. HCl, aq. NaCO₃, and water in this order, dried, and evaporated to dryness. The residue was subjected to column chromatography (CH₂Cl₂-CCl₄ 1:1) to give 9 as a pale yellow oil (1.25 g, 91%): additional chromatographic purification (at least twice with CH₂Cl₂) made it pure analytically: ¹H NMR (400 MHz) δ 1.00 (s, 6H), 1.30 (s, 6H), 2.23 (s, 2H), 7.37—7.46 (m, 3H), 7.61—7.64 (m, 2H), 9.48 (s, 1H); ¹³C NMR (100.6 MHz) δ 23.0 (CH₃), 28.2 (CH₃), 46.2 (C), 47.3 (C), 47.7

(CH₂), 127.9 (CH), 128.1 (CH), 130.9 (CH), 138.8 (C), 206.1 (CH), 209.1 (C); IR (neat) 1728, 1676 cm⁻¹; MS m/z 232 (M⁺). Anal. Calcd for C₁₅H₂₀O₂: C, 77.55; H, 8.68. Found: C, 77.47; H, 8.76.

2,2,4,4-Tetramethyl-1-phenyl-6,7,8-trithiabicyclo[3.2.1]octane (2): A mixture of **9** (1.07 g, 4.62 mmol) and Lawesson's reagent⁶ (3.74 g, 9.24 mmol) in xylene (50 mL) was heated under reflux for 49 h. The mixture was cooled to room temperature, washed with aq. NaHCO₃ and water, and dried, and the solvent was removed under reduced pressure. The residue was subjected to column chromatography (CCl₄) to give a crude product of **2**. The crude material was recrystallized from hexane to give pure **2** as yellow needles (477 mg, 35%): m.p. 145.3—145.7 °C (hexane). ¹H NMR (300 MHz) δ 1.06 (s, 3H), 1.15 (dd, J = 14.6, 1.5 Hz, 1H), 1.14 (s, 3H), 1.16 (s, 3H), 1.41 (s, 3H), 1.89 (d, J = 14.7 Hz, 1H), 4.95 (d, J = 1.5 Hz, 1H), 7.28—7.32 (m, 3H), 7.46—7.51 (m, 2H); ¹³C NMR (50 MHz) δ 26.5 (CH₃), 27.9 (CH₃), 29.7 (CH₃), 32.2 (CH₃), 39.3 (C), 43.8 (C), 48.2 (CH₂), 72.6 (CH), 90.0 (C), 127.3 (CH), 127.9 (CH), 129.7 (CH), 138.2 (C); MS m/z 296 (M⁺). Anal. Calcd for C₁₅H₂₀S₃: C, 60.76; H, 6.80. Found: C, 60.96; H, 6.82.

2,2,4,4-Tetramethyl-1-phenyl-6,7,8-trithiabicyclo[3.2.1]octane 6-exo-Oxide (3): To a solution of **2** (540 mg, 1.82 mmol) in CH₂Cl₂ (15 mL) was added a solution of MCPBA (87%, 468 mg, 2.36 mmol) in CH₂Cl₂ (15 mL) at 0 °C. After having been stirred for 3 h, the mixture was diluted with aq. NaHSO₃. The organic layer was separated, washed with aq. NaHCO₃ and water, dried, and evaporated to dryness. The residue was subjected to column chromatography (CH₂Cl₂-Et₂O 96:4) to give **3** (432 mg, 76%): colorless needles, m.p. 162.0—166.0 °C (hexane). ¹H NMR (400 MHz) δ 0.89 (s, 3H), 1.29 (s, 3H), 1.31 (s, 3H), 1.32 (dd, J = 14.8, 1.0 Hz, 1H), 1.44 (s, 3H), 1.59 (d, J = 15.0 Hz, 1H), 4.74 (d, J = 1.0 Hz, 1H), 7.30—7.34 (m, 3H), 7.43—7.47 (m, 2H); ¹³C NMR (100.6 MHz) δ 26.1 (CH₃), 28.9 (CH₃), 30.2 (CH₃), 31.8 (CH₃), 35.1 (C), 41.6 (C), 49.8 (CH₂), 95.17 (C), 95.29 (CH), 127.5 (CH), 128.3 (CH), 129.9 (CH), 137.2 (C); IR (KBr) 1090 (S=O) cm⁻¹; MS m/z 312 (M+). Anal. Calcd for C₁₅H₂₀OS₃: C, 57.65 ; H, 6.45. Found: C, 57.36 ; H, 6.40.

X-Ray Crystal Structure Determination of 3. $M_{\rm w}$ 312.50. 0.26 × 0.20 × 0.02 mm³, monoclinic, space group $P2_1/n$, a=30.26(1), b=15.920(4), c=6.475(2) Å, $\beta=95.84(3)^{\circ}$, V=3100.0(2) Å³, $D_{\rm c}=1.339$ g cm⁻³, Z=8, $\mu({\rm Mo_{K\alpha}})=4.492$ mm⁻¹. Mac Science MXC18KHF diffractometer with graphite-monochromated ${\rm Mo_{K\alpha}}$ radiation ($\lambda=0.71073$ Å), $\theta/2\theta$ scans method in the range 3° < 2 θ < 48.5° (0 < h < 35, -18 < k < 0, -7 < l < 7), 5981 reflections measured, 4710 unique reflections. The structure was solved by direct methods and refined by a full-matrix least-squares method using 3079 reflections [$I \ge 2.5\sigma(I)$] for 348 parameters. The non-hydrogen atoms were refined anisotropically. The final $R(R_{\rm w})=0.075$ (0.077) and GOF = 3.426; max/min residual electron density = 0.49/–0.48 e Å⁻³.

General Procedure for Treatment of 1,2,4-Trithiolane Oxide (3) with LDA and then an Electrophile: D_2O : To a solution of 3 (63 mg, 0.20 mmol) in THF (10 mL) was added LDA (0.14 M solution in THF, 1.7 mL, 0.24 mmol) at -78 °C under argon. The color of the solution turned from colorless to deep purple immediately. The solution was stirred for 1 h at -78 °C and then D_2O (0.5 mL) was added. The color disappeared immediately. The mixture was warmed to room temperature and diluted with aq. NH₄Cl, and extracted with ether three times. The combined extracts were washed with water, dried, and evaporated to dryness. The residue was subjected to column chromatography (Et₂O-hexane 1:1) to give the deuterated

trithiolane oxide 3-d (40 mg, 64%) and the dithiolactone 10 (13 mg, 23%). When D_2O was added at 0 °C, 3-d and 10 were obtained in 55 and 19% yields, respectively.

3,3,5,5-Tetramethyl-2-phenyl-6-thioxothian-2-ol (**10**): yellow needles, m.p. 106.0-109.0 °C (hexane). ¹H NMR (400 MHz) δ 0.97 (s, 3H), 1.15 (s, 3H), 1.51 (s, 3H), 1.58 (s, 3H), 1.69 (d, J = 14.6 Hz, 1H), 2.68 (d, J = 14.6 Hz, 1H), 2.98 (s, 1H, OH), 7.31—7.40 (m, 3H), 7.57—7.62 (m, 2H); ¹³C NMR (100.6 MHz) δ 25.2 (CH₃), 25.8 (CH₃), 35.3 (CH₃), 35.5 (CH₃), 40.4 (C), 49.0 (CH₂), 52.2 (C), 95.9 (C), 127.8 (CH), 128.0 (CH), 128.5 (CH), 139.6 (C), 252.2 (C); MS m/z 280 (M+). Anal. Calcd for C₁₅H₂₀OS₂: C, 64.24; H, 7.19. Found: C, 64.34; H, 7.28.

MeI: the oxide **3** (209 mg, 0.67 mmol) was treated with LDA (0.80 mmol) and then with MeI (0.2 mL) to give 2,2,4,4-tetramethyl-1-methylthio-5-phenyl-6,7-dithiabicyclo[3.1.1]heptane 6-*endo*-oxide (**12**) (40 mg, 90%): colorless crystals, m.p. 121.0—122.0 °C (hexane). ¹H NMR (200 MHz) δ 1.05 (s, 3H), 1.34 (s, 3H), 1.38 (s, 3H), 1.50 (s, 3H), 1.67 (d, J = 14.5 Hz, 1H), 2.24 (s, 3H), 2.87 (d, J = 14.4 Hz, 1H), 7.22—7.35 (m, 5H); ¹³C NMR (50 MHz) δ 12.6 (CH₃), 28.6 (CH₃), 29.0 (CH₃), 29.3 (CH₃), 29.7 (CH₃), 38.6 (C), 40.2 (C), 49.6 (CH₂), 85.4 (C), 94.4 (C), 127.2 (CH), 127.8 (CH), 128.1 (CH), 139.4 (C); IR (KBr) 1096 (S=O) cm⁻¹; MS m/z 326 (M⁺). Anal. Calcd for C₁₆H₂₂OS₃: C, 58.85; H, 6.79. Found: C, 58.94; H, 6.78.

X-Ray Crystal Structure Determination of 12. $M_{\rm W}$ 326.53. $0.30 \times 0.24 \times 0.10$ mm³, monoclinic, space group $P2_1/a$, a = 17.666(3), b = 11.310(2), c = 8.431(1) Å, $\beta = 94.65(1)^{\circ}$, V = 1678.9(5) Å³, $D_{\rm C} = 1.291$ g cm⁻³, Z = 4, $\mu({\rm Mo_{K\alpha}}) = 39.154$ mm⁻¹. Mac Science MXC3KHF diffractometer with graphite-monochromated Cu_{K\alpha} radiation ($\lambda = 1.54178$ Å), $\theta/2\theta$ scans method in the range 3° < 2 θ < 140° (0 < h < 21, 0 < k < 13, -10 < l < 10), 3571 reflections measured, 2366 unique reflections. The structure was solved by direct methods and refined by a full-matrix least-squares method using 2366 reflections [$l \ge 3\sigma(l)$] for 257 parameters. The non-hydrogen atoms were refined anisotropically. The final $R(R_{\rm W}) = 0.057$ (0.056) and GOF = 2.168; max/min residual electron density = 0.68/-0.48 e Å⁻³.

EtI: the oxide 3 (122 mg, 0.39 mmol) was treated with LDA (0.47 mmol) and then EtI (0.3 mL) to give 1-ethylthio-2,2,4,4-tetramethyl-5-phenyl-6,7-dithiabicyclo[3.1.1]heptane 6-*endo*-oxide (13) (106 mg, 79%): colorless crystals, m.p. 92.0—92.1 °C (hexane). ¹H NMR (400 MHz) δ 1.04 (s, 3H), 1.25 (t, J = 7.5 Hz, 3H), 1.34 (s, 3H), 2.37 (s, 3H), 1.50 (s, 3H), 1.66 (t, J = 14.5 Hz, 1H), 2.75 (dq, J = 12.4, 7.5 Hz, 1H), 2.86 (d, J = 14.2 Hz, 1H), 2.88 (dq, J = 12.3, 7.3 Hz, 1H), 7.23—7.27 (m, 2H), 7.31—7.35 (m, 3H); ¹³C NMR (100.6 MHz) δ 14.8 (CH₃), 24.0 (CH₂), 28.6 (CH₃), 29.0 (CH₃), 29.4 (CH₃), 29.8 (CH₃), 38.4 (C), 40.2(C), 49.5 (CH₂), 85.2 (C), 94.5(C), 127.2 (CH), 127.8 (CH), 128.1 (CH), 139.5 (C); IR (KBr) 1092 (S=O) cm⁻¹; MS m/z 340 (M⁺). Anal. Calcd for C₁₇H₂₄OS₃: C, 59.95; H, 7.10. Found: C, 60.11; H, 7.16.

2-PrBr: the oxide **3** (126 mg, 0.40 mmol) was treated with LDA (0.48 mmol) and then 2-PrBr (0.5 mL) to give 3,3,5,5-tetramethyl-6-[(methylethyl)dithio]-6-phenylthian-2-one (**14**): colorless crystals, m.p. 101.8—102.0 °C (MeOH-CH₂Cl₂); ¹H NMR (400 MHz) δ 1.12 (s, 3H), 1.14 (d, J = 7.0 Hz, 3H), 1.23 (d, J = 6.6 Hz, 3H), 1.29 (s, 3H), 1.36 (s, 3H), 1.37 (s, 3H), 1.65 (d, J = 15.1 Hz, 1H), 2.40 (d, J = 15.1 Hz, 1H), 3.21 (sept, J = 6.7 Hz, 1H), 7.27—7.32 (m, 1H), 7.33—7.38 (m, 2H), 7.74 (d, J = 7.6 Hz, 2H); ¹³C NMR (100.6 MHz) δ 21.9 (CH₃), 22.7 (CH₃), 26.93 (CH₃), 26.97 (CH₃), 30.0 (CH₃), 30.3 (CH₃), 40.8 (C), 41.6

(CH), 46.8 (C), 50.5 (CH₂), 84.1(C), 127.4 (CH), 127.7 (CH), 130.9 (CH), 138.7(C), 207.5 (C); IR (KBr) 1652 (C=O) cm⁻¹. Anal. Calcd for C₁₈H₂₆OS₃: C, 60.97; H, 7.39. Found: C, 60.96; H, 7.40.

X-Ray Crystal Structure Determination of 14. $M_{\rm w}$ 354.58. $0.30 \times 0.30 \times 0.14$ mm³, triclinic, space group P-1, a=7.974(1), b=9.614(2), c=12.767(3) Å, $\alpha=107.42(2)$, $\beta=95.84(3)$, $\gamma=96.15(2)^{\circ}$, V=925.1(3) Å³, $D_{\rm c}=1.273$ g cm⁻³, Z=2, $\mu({\rm Cu_{K\alpha}})=36.532$ mm⁻¹. Mac Science MXC3KHF diffractometer with graphite-monochromated ${\rm Cu_{K\alpha}}$ radiation ($\lambda=1.54178$ Å), $\theta/2\theta$ scans method in the range 3° < 2 θ < 140° (0 < h < 9, -11 < k < 11, -15 < l < 15), 3898 reflections measured, 3477 unique reflections. The structure was solved by direct methods and refined by a full-matrix least-squares method using 3373 reflections [$I \ge 2\sigma(I)$] for 300 parameters. The non-hydrogen atoms were refined anisotropically. The final R ($R_{\rm w}$) = 0.0465 (0.0578) and GOF = 2.550; max/min residual electron density = 0.62/-0.72 e Å⁻³.

H₂O at Room Temperature after Stirring for 38 h: the oxide 3 (62 mg, 0.20 mmol) was treated with LDA (0.24 mmol) at −78 °C. The purple-colored mixture was warmed to room temperature, stirred for 38 h at room temperature, and diluted with water. Column chromatography (CH₂Cl₂-hexane 1:1), followed by further purification with HPLC [INERTSIL PREP-SIL (GL Science Inc), CH₂Cl₂-hexane 1:1], gave the trithiolane 2 (7.2 mg, 12%), the thiol 18 (6.9 mg, 12%), *meso-17* (6.2 mg, 12%), and *dl-17* (8.3 mg, 14%). The compound *dl-17* gave two peaks on an HPLC analysis using a chiral column [CHIRALPAK AD (Daicel Chemical Industries, Ltd.)].

3,3,5,5-Tetramethyl-6-phenyl-6-sulfanylthian-2-one (**18**): colorless crystals, m.p. 77.0—77.6 °C. 1 H NMR (400 MHz) δ 1.09 (s, 3H), 1.31 (s, 3H), 1.39 (s, 3H), 1.41 (s, 3H), 1.71 (d, J = 15.2 Hz, 1H), 1.91 (d, J = 15.2 Hz, 1H), 2.80 (s, 1H, SH, disappeared by shaking with CD₃OD), 7.26—7.35 (m, 3H), 7.75—7.77 (m, 2H); 13 C NMR (100.6 MHz) δ 26.0, 26.7, 30.0, 30.1, 40.0, 47.0, 49.0, 72.6, 127.3, 127.8, 129.7, 141.0, 207.7; IR (KBr) 2576 (S-H), 1648 (C=O) cm⁻¹; MS m/z 280 (M⁺). HRMS calcd for C₁₅H₂₀OS₂: M, 280.0956. Found: m/z 280.0983.

meso-3,3,5,5-Tetramethyl-6-phenyl-6-[{4,4,6,6-tetramethyl-3-oxo-1-phenyl(2-thianyl)}trisulfanyl]thian-2-one (*meso*-17): colorless crystals, m.p. 199.0—200.0 °C. 1 H NMR (400 MHz) δ 1.08 (s, 3H), 1.21 (s, 3H), 1.34 (s, 6H), 1.64 (d, J = 15.2 Hz, 1H), 2.24 (d, J = 15.1 Hz, 1H), 7.28—7.37 (m, 3H), 7.67 (d, J = 7.7 Hz, 2H); 13 C NMR (100.6 MHz) δ 26.8 (CH₃×2), 29.9 (CH₃), 30.3 (CH₃), 40.8 (C), 46.7 (C), 50.4 (CH₂), 84.4 (C), 127.4 (CH), 127.9 (CH), 131.5 (CH), 137.4 (C), 206.8 (C); IR (KBr) 1668 (C=O) cm⁻¹. Anal. Calcd for C₃₀H₃₈O₂S₅: C, 60.97; H, 6.48. Found: C, 60.45; H, 6.47.

dl-3,3,5,5-Tetramethyl-6-phenyl-6-[{4,4,6,6-tetramethyl-3-oxo-1-phenyl(2-thianyl)}trisulfanyl]thian-2-one (meso-17): colorless crystals, m.p. 190.0—191.0 °C. ¹H NMR (400 MHz) δ 1.06 (s, 3H), 1.17 (s, 3H), 1.35 (s, 3H), 1.36 (s, 3H), 1.65 (d, J = 15.2 Hz, 1H), 2.37 (d, J = 15.2 Hz, 1H), 7.24—7.32 (m, 3H), 7.61 (d, J = 7.5 Hz, 2H); ¹³C NMR (100.6 MHz) δ 26.78 (CH₃), 26.84 (CH₃), 30.0 (CH₃), 30.4 (CH₃), 40.7 (C), 46.9 (C), 50.6 (CH₂), 84.9 (C), 127.6 (CH), 127.7 (CH), 131.1 (CH), 138.1 (C), 206.8 (C); IR (KBr) 1658 (C=O) cm⁻¹. Anal. Calcd for C₃₀H₃₈O₂S₅: C, 60.97; H, 6.48. Found: C, 60.88; H, 6.49.

REFERENCES AND NOTES

1. Gröbel, B.-T.; Seebach, D. Synthesis 1977, 357—402; Vallée, Y. Functions Incorporating Two Chalcogens Other Than Oxygen. In Comprehensive Organic Functional Group Transformations,

- Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W. Eds.; Pergamon Press; Oxford; 1995; Vol. 4, Chap. 4.06, pp. 243—291.
- (a) Herrmann, J. L.; Richman, J. E.; Schlessinger, R. H. Tetrahedron Lett. 1973, 2599—2602. b)
 Wilson, S. R.; Georgiadis, G. M.; Khatri, H. N.; Bartmess, J. E. J. Am. Chem. Soc. 1980, 102, 3577—3583. (c) Seebach, D.; Corey, E. J. J. Org. Chem. 1975, 40, 231—237, and references cited therein.
- 3. For reviews, see: Smith, S. C. Five-membered Rings with Three Oxygen or Sulfur Atoms in 1,2,4-positions. In *Comprehensive Heterocyclic Chemistry II*, Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. Eds.; Pergamon Press; Oxford; 1996; Vol. 4, Chap. 4.16, pp. 581—620.
- 4. Ishii, A.; Akazawa, T.; Ding, M.-X.; Honjo, T.; Maruta, T.; Nakamura, S.; Nagaya, H.; Ogura, M.; Teramoto, K.; Shiro, M.; Hoshino, M.; Nakayama, J. *Bull. Chem. Soc. Jpn.* 1997, 70, 509—523 and references cited therein.
- 5. Maier, G.; Roth, C.; Schmitt, R. K. Chem. Ber. 1985, 118, 704-721.
- 6. Pedersen, B. S.; Scheibye, S.; Nilsson, N. H.; Lawesson, S.-O. Bull. Soc. Chim. Belg. 1978, 87, 223—228.
- 7. Ding, M.-X.; Ishii, A.; Nakayama, J.; Hoshino, M. Bull. Chem. Soc. Jpn. 1993, 66, 1714—1721.
- 8. Our initial plan was to prepare unsymmetrically substituted 1,2,4-trithiolanes 25, which are precursors for the corresponding 6,7-dithiabicyclo[3.1.1]heptanes 4, by the reaction of the bridgehead carbanion generated from 2 with electrophiles (E⁺). Meanwhile, desulfurization of 2 with P(NMe₂)₃ gave the 6,7-dithiabicyclo[3.1.1]heptane 26 whose reactivity is a subject of an alternative project.

- 9. Wratten, S. J.; Faulkner, D. J. J. Org. Chem. 1976, 41, 2465—2467.
- 10. Bock, H.; Solouki, B.; Mohmand, S.; Block, E.; Revelle, L. K. J. Chem. Soc., Chem. Commun. 1977, 287—288.
- 11. Hon, Y.-S.; Lu, L.; Li, S.-Y. J. Chem. Soc., Chem. Commun. 1990, 1627.
- 12. Tsurugi, J.; Abe, Y.; Nakabayashi, T.; Kawamura, S.; Kitao, T.; Niwa, M. J. Org. Chem. 1970, 35, 3263—3266; Kawamura, S.; Kitao, T.; Nakabayashi, T.; Horii, T.; Tsurugi, J. J. Org. Chem. 1968, 33, 1179—1181.
- Metzner, P.; Pham, T. N. J. Chem. Soc., Chem. Commun. 1988, 390—391; Metzner, P. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 59, 295—310; Cerreta, F.; Le Nocher, A.-M.; Leriverend, C.; Metzner, P.; Pham, T. N. Bull. Soc. Chim. Fr. 1995, 132, 67—74; Marrière, E.; Chevrie, D.; Metzner, P. J. Chem. Soc., Perkin Trans. 1 1997, 2019—2020.